A Model of Diffuse Broadband
Solar Irradiance for a Cloudless Sky
Published in Australian
Meteorological Magazine June 2006
Abstract
An analytic model is
presented for the broadband diffuse irradiance received at the earth’s surface
through a cloudless homogeneous atmosphere containing light absorbing agents and isotropic scattering
agents. The model is extended to include a contribution from light re-scattered
after ground reflection. The model is
validated, with some qualification, against (a) a
Motivation
Sophisticated and
comprehensive spectral and broadband models of radiation requiring numerical
solution (radiation transfer equation models) are well established in the study
of direct and diffuse light (Mishchenko et al 2002, 2003; Bird and Riordan,
1984). At the other extreme are well-supported and simple empirical broadband models
for diffuse irradiance in terms of the direct irradiance (Peterson and Dirmhirn 1981 and Campbell and
Norman 1998, hereafter PD and CN respectively). The highly idealised broadband model
developed in this paper provides an analytic expression for diffuse irradiance
which is comparable in simplicity to the empirical models. This model also
allows an a priori indication of the
empirical constants in the empirical models. Compared to the more sophisticated
numerical models, an analytic model of this nature provides an easy way to
evaluate the sensitivity of diffuse irradiance to environmental factors of
zenith angle, albedo, atmospheric transmittance, and the relative proportions
of scattering and absorption agents in the atmosphere. As such it is suitable
for illustrative or pedagogic purposes.
Introduction
At Some of the scattered sunlight is
scattered back into space and some of it reaches the surface of the earth. The
scattered radiation reaching the earth's surface is called diffuse irradiance. Some radiation is
reflected off the earth's surface and then re-scattered by the atmosphere back
to the surface. This is also a component of the observed diffuse irradiance.
Other components, ignored in this
study, are the radiation reflected directly from clouds or topography. The
total solar radiation on a horizontal surface is called global irradiance and is the sum of incident diffuse irradiance
plus the direct normal irradiance projected onto the horizontal surface.
Diffuse irradiance in
clear (cloud free) skies is typically 10% of the global irradiance. Air molecules
scatter light while aerosols may act to either absorb and scatter light. Scattering
by air molecules (Rayleigh scattering) is predominantly forward and backward of
a photon’s pre-scattering direction; scattering by aerosols (Mie scattering) is
predominantly transverse. Scattering and absorption are wavelength dependent
and height dependent. Table 1 shows typical amounts of scattering and
absorption due to the various atmospheric constituents. Water vapour is one of
the largest causes in variability of absorption
and scattering. Background information
on light transmission through the atmosphere is available at the web sites of
the Australian Bureau of Meteorology and other relevant international agencies.
Comprehensive texts include Kondratyev
1969, Iqbal 1983, Goody and Yung 1989, Bird and Riordan 1984, and Schwerdtfeger 1995.
Constituent |
Percent absorbed |
Percent scattered |
Ozone |
2 |
0 |
Water vapour |
8 |
4 |
Dry air |
2 |
7 |
Upper dust |
2 |
3 |
Lower dust |
0 |
0 |
Total |
~
14 |
~ 14 |
Table
1 Typical
fractions of solar radiation absorbed or scattered in passing through cloudless
atmosphere due to various constituents in the atmosphere (from Solar Radiation
Monitoring Laboratory,
In determining the
radiation, knowledge of the variation of the solar constant and the solar zenith angle (the angle of the sun
to the vertical) are required. Useful formulas of sufficient accuracy are
available from many sources (eg, Smithsonian Tables (List 1984), de Wit 2000)).
Half-hourly ground based observations of
irradiance are available from the Bureau of Meteorology with the convenience
that these are already tabulated against local solar time (ie, the equation of
time, the longitude distance to the reference meridian for the local time zone,
and any effect of daylight saving are already accounted for). Figure 1 compares the daily variation of the extra-terrestrial,
global, direct and diffuse irradiance for a cloud-free day at
Figure 1 Observed half-hourly exposures of global, direct and diffuse irradiance
and calculated extra-terrestrial (ET) irradiance in MJ/m2 at
.
Figure
2 Typical cloud-free diffuse irradiance.
Half-hourly exposures in MJ/m2 observed
at
Figure 3 Schematic of main features of the model. Incoming solar radiation, Q,
at the top of the atmosphere may undergo absorption, scattering within the
atmosphere or reflection from the ground. Once scattered or reflected, light
may undergo subsequent scattering.
The Model
The model as depicted
at Figure 3 assumes independence of wavelength and that all scattering is
isotropic. Also assumed is an homogeneous atmosphere of finite depth, H, containing absorbing agents and
scattering agents such that the extinction of the solar beam conforms to Beer’s
Law (Eq 1). In the first instance, it is assumed that there is no ground
reflection, ie, surface albedo is zero. The intensity (q, the
radiation energy per unit area on a surface normal to the beam) attenuates
exponentially with distance traveled l
such that
dq = - kq dl (1)
where the constant k represents the concentration of
intercepting agents: ka
represents absorbers and ks
the isotropic (multiple) scatterers so k = ka + ks . In
this paper, a scattering ratio, D, is defined as
ks / k. Table
1 shows D is
typically 0.5 and some inspection reveals that drier conditions imply D ~ 0.6 to 0.7 and moister conditions D ~ 0.3 to 0.4, all other things being equal. Now let Q represent the top of atmosphere
irradiance (being the solar constant, Q ~1367
W/m2 ) and n the zenith
angle of the sun and set the vertical coordinate as y, with y = 0 at the ground and y = H
at the top of the atmosphere. Thus
dq = + k secn q dy . (1a)
Integrating Equation 1a and noting that q = Q at y = H, then
q = Q e- k H secn + k y secn (1b)
dq = Q
k secn e-
k H secn + k y secn dy (1c)
Direct
(beam) irradiance (normal to sun) at
the surface = Q e- k Hsecn (1d)
Direct
irradiance on horizontal
surface = Q cos n e- kHsecn (1e)
The product kH is known as the optical depth of the
atmosphere, and the term e- kHsecn is the transmittance or transmissivity, T, of the angled beam. Zenith transmittance, Tz, is the transmittance when n is zero
and is given by e- kH. A typical value of Tz for a clear
day is 0.6 to 0.7 with values up to 0.8 for the clearest days (CN, McIlveen
1992).
The amount intercepted in the direct beam on
a horizontal unit area (that is, integrating Equation 1c through a vertical column of height H ) is therefore Q cosn (1 – e- kH secn ) and, of this amount, proportionately D is scattered and, through symmetry, ½ is downward
scattered. Thus, the downward diffuse irradiance So is given by
So = ½ D Q cosn (1 – e-kHsecn ) (2)
Assume that this is distributed
uniformly within the column (reasonable for clear sky) so that the downward
scattered irradiance contribution dSo
from a unit horizontal area element in the column of thickness dy is therefore
dSo = ½ D Q cosn (1 – e-kHsecn ) (1/H) dy (3)
This amount may be envisaged
as being emitted isotropically from a thin horizontal uniform slab. The flux
density reaching the surface from such a source is known to attenuate as w where
. (4)
and where 2 is the zenith angle for any scattered beam in
question. Now it is apparent that w is a function not of 2 , but
of the product ka and y, and
it turns out that a good parameterization for w is given by
(5)
where β . 1.66. And thus Equation 3 is modified by the
attenuation factor, w, to become
. (6)
The derivation of the expression
for w at Equation 4 is well
established (eg Iqbal 1983, Schwerdtfeger 1995 and Coakley 2003) and is not provided
here. However, intuitively one might expect that w would involve exponential attenuation in ka y. Substituting
Equation 5 into Equation 6 and integrating throughout the vertical column gives
(7)
and thus . (8)
Anticipating that (typical values are ~0.2), then Equation 8 may be approximated as
So = 0.5D Q cosn (1 – e-
kH secn) (1 – 0.5βka
H) (9)
Equation 9 is therefore
an expression for zero-albedo diffuse irradiance. With increasing kaH, Equation 9 will tend to
under-estimate. Replacing kaH with (1-D)kH gives
So
=
0.5D Q cosn (1 – e-
kH secn) (1 – 0.5β(1-D)
k H) , (9a)
so that the diffuse
irradiance is an analytic function of
zenith angle, n, of optical depth, k H, and the
scattering ratio, D.
Compared to photons
scattered once only, those photons undergoing second and subsequent scattering
have on average an increased path length. So the absorptive attenuation
expected from Equation 5 will be an under-estimate of absorption.
Explicitly, the
sources of error in the model as expressed by Equation 9 or 9a are as follows. The effect of multiple
scattering means that the model over-estimates diffuse irradiance when D < 1. With increasing turbidity most of the
initial absorption and scattering occurs in the upper part of the atmosphere
and so the assumption of uniformity will break down - leading to an over-estimate by the model.
Thirdly, the simplifying approximation introduced at Equation 9 causes the
model to under-estimate.
For convenience, allow
So to denote the primary diffuse irradiance. Now let S1 denote the secondary diffuse irradiance sourced from ground-reflected irradiance. Assume that
the major component is from the reflected direct irradiance,
neglecting any reflected So component. Assume that the albedo is A and that the ground reflection is Fresnel (where the angle of
reflection equals the angle of incidence). Thus there is a surface source of upward
irradiance Q cos n A e- k H secn.
With argument similar
to that above, the interception (Int)
of ground-reflected radiation is given by
Int = (1 – e -kH
secn ) Q cosn A e- kHsecn . (10)
As before, the
downward scattered contribution dS1 at the surface from a thin horizontal uniform
scattering slab is:
dS1 = ½ D w Int H-1 dy (11)
dS1 = ½ D w (1 – e -kH
secn ) Q cosn A e- kH secn H-1 dy , (11a)
and w is the atmospheric depletion of the
beam that is scattered from the slab (). The final expression for S1 after integration and neglecting second order
terms is:
S1
= 0.5D Q cosn (1 – 0.5β(1-D)k
H) (1 – e -kH
secn ) A e-
kH secn . (12)
Since diffuse irradiance S ≈
S0
+ S1 (neglecting subsequent S2, S3, S4 … terms) (13)
then . (14)
The neglect of the
reflected So, S1, …, terms causes an under-estimating
effect as ks or A
increases. This is the fourth source of error introduced by various assumptions
and approximations. If Lambertian ground reflection (where the incident beam is
reflected isotropically) were assumed then a slightly different expression for S results, namely,
. (14a)
Equations14 and 14a clearly show that S increases with D or A,
as intuitively expected. The effect of changes in n or kH
are less obvious but are easily plotted for inspection. An alternative perspective
is that the analytic model as a function of n requires a knowledge of the three parameters Tz, D and A.
A comparison of the variants
of the model with symmetrical reflection (Equation 14) and with isotropic
surface reflection (represented by Equation 14a) is provided at Figure 4 with parameters Tz = 0.8, D = 0.5 and A
= 0.25. The plots for each variant show that there is only a small difference
between them. Other comparisons with a range of parameters, not shown, support
this conclusion. The Fresnel variant for symmetrical reflection is used
hereafter mainly because it is more amenable to comparison with the empirical
models, and will be referred to as ‘the analytic model’.
Figure 4 Comparison of Fresnel and Lambert variants of the analytic model with parameters Tz = 0.8, D = 0.5 and A = 0.25.
Validation
Validation was
performed in three ways: firstly, against output from a Monte Carlo model, having
the same essential physics but not incorporating the several approximations
used above, over a range of values of Tz,
D, n and A; secondly, against observational data of
irradiance; and thirdly, against estimates from empirical models:
A Monte Carlo model is
easily constructed (less than a page of coding) and conceptually simple in that
for the same model conditions, the atmosphere is comprised of 100 layers of
thickness, h, where h = 0.01 H. Incoming solar radiation is
represented by the Q cosn term above and in the form of N
(~ 10 5 ) photons which are ‘fired’ into the top layer from above.
Within any particular layer, each photon has a probability either of passing
through uneventfully, or of being intercepted. The probabilities for either of
these events are easily related to kh secn. If a
photon is intercepted it must then either be absorbed or scattered, with
probabilities related to D . If it is scattered, then under the isotropic
scattering condition, it scatters with equal probability at any solid angle. If
it is neither scattered nor absorbed, then the photon passes into an adjacent
layer where it is subject to the same process as before. A photon reaching the ground is reflected symmetrically
with probability equal to the albedo, otherwise it is absorbed. Each photon is
tracked until either it is absorbed or it exits from the top of the atmosphere.
Counts of photons corresponding to the irradiance components of direct, diffuse,
absorbed, and that returned to space are easily made.
The
For a range of Tz , D, n and A, the results from the analytic model
as expressed by Equation 14 were compared
to the
(15)
and (16)
Comparing the analytic
model for zero albedo with this correction factor against the
Figure 6a shows similar
comparative plots using the analytic model (without any correction factor) with
albedo of 0.25, 0.5 and 0.75 with Tz
limited to 0.6, 0.4 and 0.2. The comparisons are still quite good although
the analytic model tends to strongly under-estimate with higher values of D and A
Thus, the analytic model with its
approximations and assumptions fairly represents its simple physics. For
completeness, a further correction factor, F, for non-zero albedo cases is provided
here where
(17)
(18)
As shown by the
relevant comparison at Figure 6b, the corrected analytic model provides quite
good agreement. As expected FA reduces to 1 when A = 0. To be clear, the correction factor F is simply a mathematical construct arrived at by trial and error.
It has the advantage of serving as a parameterization of the
Figure
5a Comparison of analytic model (lines) with
Figure
5b
Comparison of corrected
analytic model with
Figure
6a Similar to Figure 5a but with albedo A =
0.25, 0.5 and 0.75 in rows from the top to bottom and TZ
= 0.4, 0.6 and 0.8 in columns from left to right. With lower transmittance, relatively more
diffuse irradiance is received. With higher albedo, the irradiance increases
and the increase is greater with larger D. The analytic model still compares well but
tends to strongly under-estimate for higher albedo as D increases toward 1.0.